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Abstract

Stress contributes to the progression of many diseases. Despite stress’ contribution towards

disease, few methods for continuously measuring stress exist. We investigated if continu-

ously measured cardiovascular signals from a wearable device can be used as markers of

stress. Using wearable technology (WHOOP Inc, Boston, MA) that continuously measures

and calculates heart rate (HR) and heart rate variability (root-mean-square of successive dif-

ferences; HRV), we assessed duration and magnitude of deviations in HR and HRV around

the time of a run (from 23665 runs) or high-stress work (from 8928 high-stress work events)

in free-living conditions. HR and HRV were assessed only when participants were motion-

less (HRmotionless). Runs were grouped into light, moderate, and vigorous runs to determine

dose response relationships. When examining HRmotionless and HRV throughout the day, we

found that these metrics display circadian rhythms; therefore, we normalized HRmotionless

and HRV measures for each participant relative to the time of day. Relative to the period

within 30 minutes leading up to a run, HRmotionless is elevated for up to 180–210 minutes fol-

lowing a moderate or vigorous run (P<0.05) and is unchanged or reduced following a light

run. HRV is reduced for at least 300 minutes following a moderate or vigorous run (P<0.05)

and is unchanged during a light run. Relative to the period within 30 minutes leading up to

high-stress work, HRmotionless is elevated during and for up to 30 minutes following high-

stress work. HRV tends to be lower during high-stress work (P = 0.06) and is significantly

lower 90–300 minutes after the end of the activity (P<0.05). These results demonstrate that

wearables can quantify stressful events, which may be used to provide feedback to help

individuals manage stress.

Introduction

Stress has been implicated as a contributing factor to numerous diseases, including cardiovas-

cular disease, depression, and certain types of cancers [1, 2]. The number of stressful events,

the degree to which someone responds to a stressful event, and the time it takes to recover

from a stressful event have been found to be associated with mortality and poor mental and

physical health [3, 4]. Despite the links between stress and disease, few methods exist that

allow people to objectively quantify the amount of stress caused by an event; therefore, many
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individuals lack the knowledge to avoid or properly manage stressful events. To appropriately

manage stress, methods that quantify the impact and duration of stressful events in real-time

need to be developed.

In controlled laboratory settings, stress is typically gauged with surveys, cardiovascular

measures, or blood/saliva tests. However, each of these methods are limited in their ability to

be used for widespread use: surveys require conscientious feedback that may not be possible

during or right after a stressful event; cardiovascular measures are classically acquired using

leads for electrocardiograms and sphygmomanometers for measuring blood pressure, which

require bulky equipment and specialized knowledge to use; and blood or saliva tests require

specialized equipment and trained technicians to measure the concentration of stress hor-

mones. Translating these laboratory-grade stress examinations into tests that are easier to per-

form and interpret may promote greater adoption of stress tracking.

Certain wearable devices continuously measure cardiovascular parameters using photo-

plethysmography and provide a unique opportunity to investigate the magnitude of stressful

events on cardiovascular parameters in real-time. In particular, HR and HRV have the poten-

tial to be surrogate markers of stress, whereby both HR or HRV can vary in response to the

degree of sympathetic or parasympathetic input [5–7]. Recent research has investigated the

ability of wearable-derived metrics to detect or measure stressful events, like infections and

vaccines, when aggregated over a long periods of time [8–10]. In this study, we aimed to lever-

age the continuous monitoring provided by the WHOOP strap (WHOOP Inc, Boston, MA) to

determine the magnitude of stressful events on cardiovascular metrics in free-living

conditions.

Methods

Data collection

Since data were not identifiable and were stored on a secure server, this study was deemed

exempt from Institutional Review Board (IRB) oversight by Advarra’s IRB (Columbia, MD).

Participants were excluded from the study if they were under the age of 21 and if they indicated

a gender other than male or female. A wrist-worn device (WHOOP versions 3.0 and 4.0; Bos-

ton, MA) that continuously collects heart rate, three-axis accelerometer, temperature, and

three-axis gyroscope data was used to calculate cardiovascular metrics and sleep and wake

times, which have been validated elsewhere [11]. Running and high-stress work activities are

logged via manual input from a participant or auto-detected by the WHOOP analytics plat-

form. Sleep and wake onset are autodetected. To be considered for this analysis, a user must

have had at least 25 days of data over a 28-day span and no more than 28 days of data were

used for each participant.

Data calculation

Resting heart rate and heart rate variability. Heart rate (HRmotionless) and heart rate vari-

ability (HRV) were calculated during periods that lacked motion detected by the accelerome-

ter. Moving-block sub-sampling was used to calculate HRmotionless and HRV. The step size was

30 seconds and utilized a 5-minute block of photoplethysmography-derived beat-to-beat inter-

vals and accelerometry data to calculate HRmotionless and HRV in the absence of motion arti-

facts. Heart rate variability was calculated as the root-mean-square of successive differences.

HRmotionless and HRV derived from the WHOOP device have been validated against gold-stan-

dard measures from electrocardiograms [11].

Relative fractional differences. To calculate the relative fractional difference for resting

heart rate and heart rate variability throughout the day, we first calculated the median resting
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heart rate and heart rate variability for each hour of the day over a 28-day period for each par-

ticipant. We then divided the median daily HRmotionless and HRV by each hour’s median

HRmotionless and HRV value to determine the relative fractional difference of each hour’s

HRmotionless and HRV from the median daily HRmotionless and HRV within each user.

Impact of an activity. HRmotionless and HRV were aggregated over the duration of the

activity or over 30-minute intervals before the start of or following an activity. Aggregated

HRmotionless and HRVs were then subtracted by the median hourly HRmotionless and HRV for

that time of day for a given user. Lastly, we subtract the post-activity normalized HRmotionless

and HRV values from the pre-activity normalized HRmotionless and HRV values. Cardiovascu-

lar parameters were not calculated during the running activity due to motion artifacts which

prevent the reliable acquisition of the photoplethysmography data [12]. To determine whether

a running load was light, moderate, or vigorous, we utilized a proprietary algorithm that scores

a run using the amount of time spent in a cardiovascular zone based on an individual’s heart

rate reserve.

Statistical analysis. Data analyses were conducted in either Python (version 3.8.12) or

R (version 4.2.0). Descriptive statistics are provided as frequencies and percentages for cate-

gorical variables or means and 95% confidence intervals for continuous variables. To assess

circadian rhythms in HRmotionless and HRV, we fit splines to linear models to determine the

non-linear relationships. To determine if HRmotionless and HRV deviated from baseline rela-

tive to the period before a run or high-stress work, we first modeled the data using linear

mixed-effect models and then utilized Dunnet’s test as a post-hoc test that directly com-

pared the time intervals following an activity to the time before an activity. To determine

the difference in HRmotionless and HRV between running loads, we calculated areas under

the curve using the trapezoidal method [13] (treating 0 as the baseline) for each running

load group and compared these areas under the curve using Tukey’s test. Significance was

set as P<0.05.

Results

Diurnal fluctuations in HRmotionless and HRV

To better understand the diurnal variation that occurs throughout the day, we analyzed nor-

malized hour-to-hour fluctuations in HRmotionless and HRV throughout the day for 974 indi-

viduals (Table 1) aggregated within a given clock hour or hours to and from sleep or wake.

Table 1. Demographics of participants for circadian analysis.

Overall (N = 974)

Gender

female 273 (28.0%)

male 701 (72.0%)

Age

Mean (CI) 36.849 (36.196, 37.503)

Height

Mean (CI) 1.766 (1.760, 1.772)

Weight

Mean (CI) 80.850 (79.848, 81.852)

BMI

Mean (CI) 25.818 (25.560, 26.075)

https://doi.org/10.1371/journal.pone.0285332.t001
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Within a given clock hour (Fig 1A and 1B), HRmotionless decreases from time point 0.5 to 4.5

(β = -0.014, P<0.001), increases from time point 4.5 to 13.5 (β = 0.025, P<0.001), negligibly

decreases from time point 13.5 to 19.5 (β = -0.004, P<0.001), and decreases from time point

19.5 to 23.5 (β = -0.026, P<0.001). For HRV within a given clock hour (Fig 1B), we find that

HRV increases from time point 0.5 to 6.5 (β = 0.042, P<0.001) and time point 6.5 to 11.5 (β =

0.077, P<0.001), and decreases from time point 11.5 to 17.5 (β = -0.027, P<0.001) and 17.5 to

23.5 (β = -0.073, P<0.001).

We next modeled fluctuations in HRmotionless and HRV leading up to and following sleep,

with negative numbers reflecting hours until sleep onset and positive numbers reflecting hours

after sleep (Fig 1C and 1D). HRmotionless increases from time point -14.5 to -9.5 (β = 0.014,

P<0.001), negligibly decreases from -9.5 to -3.5 (β = -0.002, P<0.001), decreases from -3.5 to

6.5 (β = -0.024, P<0.001), and negligibly increases from 6.5 to 8.5 (β = 0.022, P<0.001). HRV

increases from time point -14.5 to -11.5 (β = 0.068, P<0.001), decreases from -11.5 to -0.5 (β =

-0.036, P<0.001) and -0.5 to 0.5 (β = -0.284, P<0.001), and increases from 0.5 to 8.5 (β =

0.031, P<0.001).

Lastly, we modeled fluctuations in HRmotionless and HRV leading up to and following wake,

with negative numbers representing hours until wake and positive numbers representing

hours after wake (Fig 1E and 1F). HRmotionless decreases from time point -8.5 to -0.5 (β =

-0.009, P<0.001), increases from -0.5 to 2.5 (β = 0.073, P<0.001), and negligibly decreases

from 2.5 to 12.5 (β = -0.001, P<0.001) and from 12.5 to 14.5 (β = -0.022, P<0.001). HRV

increases from time point -8.5 to -0.5 (β = 0.03, P<0.001) and from -0.5 to 1.5 (β = 0.193,

P<0.001), negligibly increases from 1.5 to 4.5 (β = 0.019, P<0.001), and decreases from 4.5 to

14.5 (β = -0.038, P<0.001).

Direct and residual effects of physical and psychological stressors on

HRmotionless and HRV

To characterize the effects of a physical stressor on cardiovascular parameters, we examined

HRmotionless and HRV starting from 30 minutes leading up to and 5 hours following 23665 run-

ning activities (Table 2). Furthermore, we aimed to determine if we could detect a dose effect

of running on HRmotionless and HRV and grouped runs into light, moderate, and vigorous

loads based on time spent in cardiovascular zones. Relative to the period before the run, HRmo-

tionless remains elevated after a moderate or vigorous run for at least 180–210 minutes (P<0.05)

and is unchanged or decreases after a light run (Fig 2A). Using the area under the curve to

compare the relative change in HRmotionless post-run between running loads we find that, com-

pared to light runs, both moderate and vigorous runs led to greater elevations in HRmotionless

(P<0.05; Fig 2B). Relative to the period before the run, HRV remains depressed after a moder-

ate and vigorous run for at least 270–300 minutes (P<0.05) and is unchanged after a light run

(Fig 2C). Using the area under the curve to compare the relative change in HRV post-run

between running loads, we find that vigorous runs lead to larger decreases in HRV than mod-

erate to vigorous runs (P<0.05; Fig 2D).

To characterize the effects of a psychological stress on cardiovascular parameters, we exam-

ined HRmotionless and HRV starting from 30 minutes leading up to and 300 minutes following

8928 high-stress work periods (Table 3). We find that HRmotionless is elevated during and for

up to 30-minutes after high-stress work (P<0.05; Fig 3A) and after thirty-minutes is either

unchanged or depressed (P>0.05; Fig 3A). HRV trended towards being lower during high-

stress work (P = 0.06; Fig 3B) and was significantly lower 90–300 minutes after the event

(P<0.05; Fig 3B). In summary, these results suggest that HRmotionless and HRV from wearables

may be used as surrogate markers of physical or psychologically stressful events.
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Fig 1. Diurnal variations in HRmotionless and HRV. Data are aggregated for each hour over 28 days for each

participant and expressed as the relative fractional difference from the average throughout the day. (a) HRmotionless

relative to time of day. (b) HRV relative to time of day. (c) HRmotionless leading up to and following sleep onset. (d)

HRV leading up to and following sleep onset. (e) HRmotionless leading up to and following wake onset. (f) HRV leading

up to and following wake onset. Tables below each figure represent the results from the linear spline models. Data are

represented by means ± 95% CI.

https://doi.org/10.1371/journal.pone.0285332.g001
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Discussion

The response to a stressor can be measured via reactivity–how much the system deviates from

baseline–and recovery–how long it takes the system to return to baseline [14]–and both reac-

tivity and recovery can be quantified using cardiovascular parameters [15]. Improving aware-

ness into how the body responds to stress, termed interoception, may lead to healthier stress

responses [16]; therefore, easily-accessible methods to quantify the cardiovascular impact of

stressors, which may improve interoception, may help individuals manage their stress. In this

investigation, we collated self-reported physically and psychologically stressful events with

objective measures from a wearable that continuously measures cardiovascular parameters

(WHOOP Inc, Boston, MA). We find that individuals wearing WHOOP display circadian

rhythms in their HRmotionless and HRV, and that deviations from an individual’s circadian

rhythm can be used to gauge the magnitude of a stressful event based on HRmotionless and

HRV.

A key finding from this study is that HRmotionless and HRV exhibit a circadian rhythm that

aligns with the time a person falls asleep or wakes up. This finding is novel as this study is the

first to investigate patterns of HRmotionless and HRV relative to when someone falls asleep or

wakes up. Using clock time to assess circadian rhythms, prior research indicates that HR is ele-

vated during day time and decreases leading up to and throughout the night, whereas HRV

increases throughout sleep, peaks in the early morning, and subsequently decreases through-

out the day [17, 18]. Since HR and HRV exhibit circadian rhythms, measures that rely on these

cardiovascular parameters may need to be corrected for the time of day when the measure was

taken.

Table 2. Demographics of running populations and descriptive statistics of associated runs.

Light (N = 463) Moderate (N = 1834) Vigorous (N = 1097)

Gender

Female 221 (47.7%) 833 (45.4%) 502 (45.8%)

Male 242 (52.3%) 1001 (54.6%) 595 (54.2%)

Age

Mean (CI) 37.404 (36.414, 38.394) 36.437 (35.969, 36.906) 35.486 (34.893, 36.079)

Height (m)

Mean (CI) 1.732 (1.723, 1.742) 1.734 (1.730, 1.739) 1.732 (1.726, 1.737)

Weight (kg)

Mean (CI) 74.983 (73.462, 76.505) 73.834 (73.166, 74.501) 72.237 (71.443, 73.032)

BMI

Mean (CI) 24.793 (24.420, 25.167) 24.402 (24.241, 24.564) 23.954 (23.765, 24.142)

Number of Runs

Count 1640.000 17085.000 4940.000

Number of Runs Logged per Person

Mean (CI) 3.542 (3.098, 3.986) 9.316 (9.029, 9.602) 4.503 (4.245, 4.761)

Max Heart Rate (BPM)

Mean (CI) 146.536 (144.519, 148.552) 174.751 (174.330, 175.171) 183.068 (182.567, 183.569)

Average Heart Rate (BPM)

Mean (CI) 116.283 (114.278, 118.288) 144.803 (144.321, 145.284) 154.626 (154.072, 155.180)

Duration (min)

Mean (CI) 26.239 (21.662, 30.816) 43.746 (42.975, 44.516) 83.818 (80.490, 87.146)

Heart rate includes measures taken in the presence of motion.

https://doi.org/10.1371/journal.pone.0285332.t002
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Fig 2. Dose-response effects of running on HRmotionless and HRV. Data are aggregated over 30 minute blocks of time

leading up to and following a run, and are normalized to time of day and the thirty minutes leading up to the run

(“Pre”). (a) Change in HRmotionless (BPM) relative to the period before a run. The table reflects the absolute differences

and P-values for HRmotionless following a run, grouped by running load. P-values were determined using Dunnet’s test,

treating the period before a run (“Pre”) as the control group. (b) Area under the curve for HRmotionless following a run.

P-values were determined using Tukey’s test with comparisons made across all groups. (c) Change in HRV (RMSSD)

relative to the period before a run. The table reflects the absolute differences and P-values for HRV following a run,

grouped by running load. P-values were determined using Dunnet’s test, treating the period before a run (“Pre”) as the

control group. (d) Area under the curve for HRV following a run. P-values were determined using Tukey’s test with

comparisons made across all groups. Data are represented by means ± 95% CI.

https://doi.org/10.1371/journal.pone.0285332.g002
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Correcting for the time of day when HRmotionless and HRV were measured, we sought to

determine how different types of stressors might impact cardiovascular dynamics in real-time

conditions. High-intensity physical stressors, like exercise, can elevate HR and reduce HRV

for many hours after the physical stressor has been removed due to persistent activation of the

sympathetic nervous system and inhibition of the parasympathetic nervous system [19, 20].

Conversely, low-intensity exercise has been shown to reduce heart rate for up to 24 hours fol-

lowing the exercise bout, possibly due to an acute reduction in total and regional vascular resis-

tance [21, 22]. We find that we can replicate these laboratory-based findings in real-world

conditions by examining the impact of different running loads on cardiovascular dynamics

post-exercise. These findings indicate that data derived from wearable devices can be used to

assess the impact of an exercise session on the cardiovascular system, which may be useful in

determining the efficacy of the exercise and assessing short-term recovery from exercise.

Moreover, these results may also have health implications as the rate of cardiovascular recov-

ery from exercise has been shown to be a predictor of mortality [23].

We also investigated how cardiovascular dynamics change in response to self-perceived

high-stress work, which may consist of a psychological stress, physical stress, or a combination

of the two. Psychological stress impacts cardiovascular metrics in a similar manner as physical

stress—by increasing HR and reducing HRV during and following a stressful event [24, 25]. In

this investigation, we find that HRmotionless is elevated during and immediately after high-stress

work, whereas HRV tends to be reduced during and following 90 minutes after high-stress

work. One plausible explanation for the 90-minute lag observed with a stressor-induced

Table 3. Demographics of high-stress work population and descriptive statistics of associated high-stress work

events.

Overall (N = 1778)

Gender

Female 536 (30.1%)

Male 1242 (69.9%)

Age

Mean (CI) 36.916 (36.339, 37.493)

Height (m)

Mean (CI) 1.756 (1.751, 1.760)

Weight (kg)

Mean (CI) 80.338 (79.527, 81.148)

BMI

Mean (CI) 25.916 (25.704, 26.127)

Number of High-Stress Works

Count 8928.000

Number of High-Stress

Works Logged per Person

Mean (CI) 5.021 (4.625, 5.418)

Max Heart Rate (BPM)

Mean (CI) 149.561 (148.576, 150.545)

Average Heart Rate (BPM)

Mean (CI) 113.630 (112.586, 114.674)

Duration (min)

Mean (CI) 114.792 (108.945, 120.638)

Heart rate includes measures taken in the presence of motion.

https://doi.org/10.1371/journal.pone.0285332.t003
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Fig 3. Effects of high-stress work on HRmotionless and HRV. Data are aggregated over 30 minute blocks of time

leading up to, during, and following high-stress work, and are normalized to time of day and the thirty minutes leading

up to the high-stress work. (a) Change in HRmotionless (BPM) relative to the period before high-stress work. (b) Change

in HRV (RMSSD) relative to the period before high-stress work. The table reflects the absolute differences and P-

values for HRmotionless or HRV following a high-stress work. P-values were determined using Dunnet’s test, treating the

period before a high-stress work (“Pre”) as the control group. Data are represented by means ± 95% CI.

https://doi.org/10.1371/journal.pone.0285332.g003
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reduction in HRV following high-stress work is that this lagged-response may be due to an

immediate relief of the stressor being removed (i.e., HRV returning to near pre-stressor levels)

followed by a rumination period [26]; however, this hypothesis is only speculative and requires

further research to validate.

In summary, the results from this study indicate that HRmotionless and HRV exhibit a circa-

dian rhythm that can be used as a baseline to detect deviations in HRmotionless and HRV caused

by stressful events. These results have practical applications as they demonstrate a novel

method of normalization to detect deviations in stress-related metrics and provide evidence

that detecting stress can be done passively and outside of clinical settings. An interesting future

direction for research will be to assess if these wearable-derived cardiovascular markers of

stress can predict the onset of certain diseases [27]. Ultimately, these findings may be useful in

detecting stressful events, increasing interoception, and improving responses to stressors.
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